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ABSTRACT 

Laplace's  equation, important in physical sciences,  is a diffi- 
cult equation to solve for  arbi t rary boundaries and boundary conditions. 
The author in his  Ph. D. thesis descr ibes  the logic design of a small, 
high speed, random walk machine to  solve Laplace 's  equation. 

To convert the logic diagrams to  circuit  diagrams,  a commer- 
cial  circuit  family is chosen to implement the logic. 
choice of a circuit  family i s  a figure of mer i t ,  f = C D, where C i s  the 
initial cost of the logic units and D i s  the propagation delay through a 
shift regis ter  bit,  a frequently used element in the machine. The min- 
imum value of f i s  the most desirable value. 
were then developed f rom the logic diagrams on the bas i s  of the circuit  
family chosen. 

The bas is  of 

The circuit  diagrams 

A control procedure i s  outlined in consideration of the computer 
the Department of Electr ical  Engineering expects to  order  shortly. 
The computer i s  found to  be fast  enough to control the random walk 
machine at  the speed goals set f o r  the random walk machine. 

Estimated costs  based upon the number and cost  of the logic 
units required is given. 
discus sed. 

Proposals submitted and to be submitted a r e  

The appendix contains the circuit  diagrams developed for  the 
Random Walk machine along with the original logic diagrams. 
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, 

Laplace's equation, a well known and important equation in field 
theory, is the solution to  the potential within a charge-free region fo r  
a rb i t r a ry  boundary conditions. It descr ibes  also incompressible fluid 
flow and the steady state temperature distribution in solids and numer- 
ous other physical phenomena. 

At present virtually the only practical  methods of solution a r e  
field plotting, which has been done for  years  past, and i terative solu- 
tions of the analogous finite difference equation on digital computers. 
Other methods a r e  known, and among these a r e  random walk o r  
Monte Carlo solutions, see Brown.' Solutions of this type have been 
performed on punch card equipment, see  Yowell" and on digital com- 
puters,  see Todd. However, these a r e  uneconomical even with mod- 
e r n  high speed machines, see  Forsythe' and Lansdown.6 
Sugiyama,' and their  coworkers at the Osaka City University have built 
a random walk machine, which though slow has moderately high speed 
capabilities. 

5 Hirai,  

Lansdown6 in  his Ph. D. thesis  gives the logic diagrams of a 
special purpose random walk machine which has a speed/cost factor of 
approximately 1000 t imes that of the IBM 7090 computer. 
is to  be controlled and have i ts  output processed by a general purpose 
computer which can be used on a t ime shared basis i f  the controlling 
computer is sufficiently fast .  
tween 10 and 20 t imes that of the machine of Hirai  and Sugiyama 
because of using flip-flop register memory and counters instead of 
core  memory. 
extension to  th ree  dimensions should be much more  economical than a 
machine of the other type. 

The machine 

This machine has speed capabilities be- 

This type of design has further advantages in that the 

This project has had as  its a im the carrying on of the develop- 
ment of the random walk machine. 
mentioned thesis have been transformed to circuit designs. The pro- 
cedure for  processing the data output of the random walk machine has 
been outlined f o r  the expected Department of Electrical  Engineering 
GE/PAC 4020 control computer. The control computer must  process  
the output a t  least  a s  fast a s  it is generated. 
detail  awaiting the actual order of the 4020 controller. 
will be necessary to use the University B5500, though this will not be 
a s  convenient due to the necessity of the B5500 being run by a regular 
operator .  

The logic diagrams of the before 

This la t ter  was not done in 
Otherwise i t  



One praposal has  been submitted to  N . S .  F. though it was re- 
jected. 
purchase components and support graduate students to  complete the 
random walk machine. 

Fur ther  proposals will be submitted to obtain support to 

2 
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2. 1 Choice of Circuit Family 

Although the choice of circuit family and the transformation of 
logic a r e  closely related,  they will be discussed separately. 
summer of 1965 several  families of commercial  logic units were con- 
sidered. 
f rom other l ines considered. 
through 957 and the Motorola MC351 through 362. 

In the 

Of these,  two families had appreciably better performance 
These were the Fairchild CTpL-952 

Since the RW machine is largely made up of parallel ,  c i rcu lar ,  
left and right shift reg is te rs ,  one bit of shift regis ter  was used for  
comparison purposes. A figure of mer i t  was devised which was: 

f =  C D  
when 

c = cost  of 1 bit of shift regis ter  

d = total propagation delay 

The circuit family with the lowest figure of mer i t  has  the lowest cost 
pe r  random step, the basic step of operation of the RW machine. 
The following table gives the figures of mer i t :  

Line of Logic C D f 

Motorola MC351 through 362 $13. 77 22 3 03 

Fairchild CTpL-952 through 957 $16.07 13. 9 224 

These figures differ f rom the figures given in the progress  report  of 
1 April 1965 through 31 September 1965 due to a recalculation of the 
cos ts  and propagation delays. 
mer i t ,  though it has  a higher cost  per  bit. 

The Fairchild line has  a better figure of 

Fac tors  that will influence these figures i s  the price decrease 
a s  integrated circuit  (IC) prices drop. 
Fairchild line in this  application i s  the smaller number of IC ' s  
required: 2 1/3 Fairchild IC's pe r  bit are required to  4 3/5 Motorola 
IC's .  This means fewer units and fewer connections which will be an 
appreciable simplification. Also, manufacturers a r e  developing sev- 
e r a l  bits  of shift reg is te r  all in one IC, and this  may cause,  also a 
fur ther  decrease in price.  

Other factors  that favor the 



Thus the Fairchild CTpT, ?';2-?5? lize -=.'z.s ckiosdii iu Jeveiop the 
3 circuit diagrams f rom the logic diagrams in  the author 's  thesis .  

2 . 2  Transformation and Minimization 

The logic diagram in the thesis were  given in  AND-OR-NOT 
logic where the Fairchild CTpL lines uses AND-NOT logic. This  is 
sufficient in itself as the OR can be realized with AND's and NOT's. 
However, the Fairchild line has a lso the OR function by tying outputs 
together; this is called OR tying. Thus the replacement of AND-OR- 
NOT with AND-NOT-OR tie is virtually a 1 -  1 replacement which sim- 
plifies the transformation greatly. 

The logic diagram were quite abbreviated in  places, that is, a 
counter was shown as a single block. 
here give the entire circuit (except that only 1 of the 28 identical mem- 
o r y  rings a r e  shown). This is particularly t rue  not only in the  case  of 
counters, but a lso multiple AND's and reg is te rs  and even m o r e  s o  in 
flip-flop memory. 

The circuit  diagrams included 

Logic minimization programs were not l isted in the B5500 pro- 
g r a m  library,  nor in  IBM's SHARE listing, even though it is known to 
the wr i te r  that IBM has them for in-house use.  
s eem likely that there  would be grea t  savings of components, so this 
was not considered further.  

Fur thermore  it did not 

Should other families of logic become m o r e  economic at  the 
t ime of construction, it will be possible to make the transition rela- 
tively easily. F o r  example, AND's followed by OR's can be replaced 
directly with NAND's followed by NAND's. 
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3 .  mNERFACE AND OUTPUT DATA PROCESSI?:C=- PROCEDURE 
FOR THE GE/PAC 4020 COMPUTER 

The innerface between the RW machine and the GE/PAC 4020 

Since the 
will be nothing more  than circuitry to  change between the different 
levels of the two machines, and this will be very simple. 
4020 is a process controller it has provision for voltage level inputs. 

Since the 4020 has yet t o  be ordered (though it seems quite likely 
that it will within 3 month's time), the output data processing procedure 
was devised only in flow diagram form. 
shows an  a rb i t ra ry  boundary. 
upper boundary and the segments below a r e  the lower boundary. 
of the lattice points intersected by segments representing the upper 
boundary have unique x axis values for the non-vertical segments U2, 
U3, and U5. 
the X counter value to  give a unique memory word location for each 
lattice point. To denote that the X value corresponds to  a vertical  seg- 
ment, the memory word corresponding to  that X value can contain a 
negative value. Furthermore that negative value can now be subtracted 
f r o m  the counter and an  appropriate constant added to  give a group of 
cells, each correpsonding to  each lattice intersection with the boundary. 
This is shown in the flow diagram of Figure 3. 2. 

Refer t o  Figure 3. 1 which 
The broken segments above AA are the 

Each 

For  these points it is necessary only to  add a constant to 

The numbers at the upper left hand corner  of the blocks in Fig- 
u re  3. 2 are estimates of the memory cycles required to  perform the 
block. The maximum number of cycles is 51 which requires  82ps of 
4020 time per random walk. 
requires  66ps of 4020 time per random walk. The average t ime per 
random walk is 378ps. 
programs on a t ime shared basis. 
is more  than adequate as a controller for the RW machine. 

The average number of cycles is 41 which 

Thus 312 of the 378ps a r e  available for other 
This shows that the GE/PAC 4020 
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T y  

u5 

Figure 3 .  1. Illustrative Boundary 
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4. ESTIB,L4TED COSTS 

To make cost estimates on the finished machine, the cost  of the 
logic units was computed from the number of logic units used and the 
prices for  units purchased in the 100's of units. 
follows : 

The breakdown is as 

All but the flip-flop memor ies  $ 2,720 

2 flip-flop memories,  each having 
14 parallel, 32 bit c i rcular  shift 
regis ters ,  each $7, 190 

Sub tot a1 

14,380 

$17,100 

11% for safety factor 1,900 

Total $19,000 

In addition to account f o r  power supplies, packaging, assembly 
and construction with the aid of graduate assistants,  add another $19,000. 
Estimated total cost of the R W  machine is $38,000. 

This figure may be appreciably reduced if fas t ,  multi-bit shift 
reg is te rs  become commercially available as is desirable. 
in a multi-bit IC might justify a lower operating speed since the shift 
reg is te rs  account for  8470 of the logic circuit  cost. 

The savings 
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5. PROPGSALS 

One proposal has resulted f r o m  this project. A Research 
Initiation Grant Proposal was submitted to the National Science Founda- 
tion. 
Walk Machine. The model proposed was to be built in such a way that 
the units built could be incorporated almost directly into the final fo rm 
of the machine, thus saving duplication. 

The title was "Construction of a Feasibility Model of a Random 

This proposal was rejected. 

The wr i te r  has learned that the Bureau of Reclamation* has been 

This seems to be a likely prospect 
obtaining solutions to Laplace's equation by computer solution, though 
this has been relatively expensive. * 
and will be pursued further.  In addition, other governmental agencies 
including NASA will be considered for proposals. 

8 Conversation with Edward T. Wall, Bureau of Reclamation. 
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6. RESULTS 

The circuit  diagrams have been completed for  the random walk 
machine utilizing the Fairchild CTpL-952 through 957 line of logic. If 
l a te r  developments in integrated circuitry make another line more  
suitable, the transformation can be made relatively easily since 1: the 
majority of the machine is the flip-flop circular  shift regis ters  in which 
almost every bit is identical. 
followed by OR's is made readily into NAND's followed by NAND's o r  
NOR's followed by NOR's. 

And 2: the transformation between AND's 

The machine cost estimate has been made on the basis of the 
logic units required. 
figure m a y  drop as suitable multibit integrated circuits become 
available. 

This has been given before as $38,000. This 

The control procedure has been outlined and is estimated at 
taking an average of 66 and a maximum of 82ps to process the output 
of the RW machine a t  the end of each random step. 
comfortably within the average time per  random walk of 3 7 8 ~ s .  The 
GE/PAC 4020 should be able to spend 82% of its time shared with other 
programs. 

This fits very 

Paral le l  work in the way of graduate student research  is being 
started in the development of random bit generators and a random bit 
checker. 
Murry. These units will be necessary for the random walk machine 
which must have a generator for its source of random bits and a 
checker to a s su re  the quality of the random bits.  

This will be based on the work of Golomb, Hampton4 and 
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APPENDIX A 

CIRCUIT DIAGRAMS 

t 

The circuit  diagrams a r e  given in the same orde r  as the logic 
diagrams in  Appendix B. 
corresponding to logic diagram €3. 3a and both bea r  the same title, 
Clock and Phase Control. 

That is, Figure A. 3a is the circui t  diagram 

An index of the circuit  diagrams follows. 

Figure 

INDEX O F  THE CIRCUIT DIAGRAMS 

Title Page 

A. 1 State Diagram of Random Walk Machine Operation. . . 13 
A. 2 14 

A. 3a Clock and Phase Control . . . . . . . . . . 15 
A. 3b Random Step Control , . . . . . . . . . . 16 
A. 3c Initialization Control . . . . . . . . . . . 17 
A. 3d Loading Control . . . . . . . . . . . . . 18 
A. 3e Upper Memory Cont ro l ,  . . . . . . . . . . 19 

A. 4 Random Step Source . . . . . . . . . . . 20 
A. 5a Y Counter. . . . , . . . . . . . . . . 21 
A. 5b X Counter. . . . . . . . . . . . . . . 22 
A. 5c Y M X  Counter. . . . . . . . . . . . . . 23 
A. 5d YPX Counter . . . . . . . . . . . . . . 24 

Block Diagram of Random Walk Machine with Data Pa ths .  

A. 6 Upper and Lower Selector . . . . . . . . . . 25 
A. 7a Upper Comparator . . . . . . . . . . . . 26 
A. 7b Lower Comparator . . . . . . . . . . . . 27 
A. 8 Upper Memory (F i r s t  Ring) . . . . . . . . . 28 
A .9  Output Buffer .  . . . . . . . . . . . . . 29 

A. 10 Initialization Comparator . . . . . . . . . . 30 
A. 11 Initial Position Register . . . . . . . . . . 31 
A. 12 Input Buffer . . . . . . . . . . . . . . 32 
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Notes 

1. The majority of machine operation is  in the random walking 
section, particularly in states A, B,  and C. 

State F s ta r t s  initialization for the next random walk if there 
a r e  further walks to make (the usual situation). 

State N starts the loading; external control can specify the Load 
Walk Counter (LWC) which is state R ,  Load Initial Position 
(LIP) which is state Q, o r  Load Memory (LMM) which is state 
P. 
initialization before the random walking s tar ts .  

2 .  

3 .  

At the conclusion of loading the process goes to walk 

Figure A. 1 .  State Diagram of Random Walk Machine Operation 



Figure A. 2. Block Diagram of Random Walk Machine with Data  Paths 
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Figure  A. 5d. Y P X  Counter 
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I I 

N o t e s  : 
1. The e x i t s  from State  N a r e  cont ro l led  by 

the  ex terna l  control ,  and are labeled with 
the  appropriate  command from externa l  
cont ro l .  

2. The process w i l l  h a l t  a t  D i f  ex te rna l  
cont ro l  does not sample the contents of 
t he  output  buffer  and r e tu rn  a POB 
(prepare output buf fer )  s igna l .  

3 .  The process will h a l t  a t  P, Q, o r  R i f  
the input  buffers are no t  f i l l e d  and the  
s igna l  I B F  ( input  bu f fe r  f i l l e d )  re turn-  
ed by ex terna l  cont ro l .  

Figure B. 1. State Diagram of Control 
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Random Control 
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Step 0 

6 77 8 

v Upper Upper Upper - 
5 -  
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Figure  B. 2. Block Diagram of Random Walk Machine with Data Paths 



I 36 

RWI 0 

P C 1  s 1- 
P C 1  

b R  0- P C 1  I 

SCf FWC, d + 
RSA, b 

RC1 

RST 

P z I  ‘*PI, b P C 2  cp zJ-q--*p3,c 
P C 2  cp gq-~Pf€, d 

P C 1  I P C 1 ’  

P C 1  P C 1  

From 
External 

C o n t r o l  

Figure B. 3a. Clock and Phase Control  
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Figure B. 3b. Random Step Control 
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U p p e r  U P P  er 

1 I-4,' 

M e m o r y  M e m o r y  
N o t e :  L o w e r  m e m o r y  control i s  iden t i ca l .  R e p l a c e  every i n i t -  

i a l  "U" i n  a s i g n a l  designat ion w i t h  "L",  

Figure B. 3e. Upper Memory Control 
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Figure B. 4. Random Step Source 
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puts a r e  UG1 through uE2 
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by t h e i r  complements. 
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f 

Figure B. 7. Upper Comparator 
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USL, C e  

Note: The lower memory i s  i d e n t i c a l  to  the  upper 
memory. Replace the  l e t t e r  "U" by "L" on s igna l  
designat ions.  

Figure B. 8. Upper Memory Block Diagram 
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Figure B. 10. Y Initialization Comparator 
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Figure B. 1 1 .  Initial Position Register 
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Figure B. 12. Input Buffer 


